

CHARLOTTE

Agenda

- 1. Introduction
- 2. Cost of Equity (CAPM)
- 3. Cost of Debt
- 4. Cost of Preferred Stock
- 5. Weighted Average Cost of Capital (WACC)
- 6. Wrap-Up & Q&A

Cost of Capital - Why Does it Matter?

- Two main types of capital: debt and equity
 - Debt: Money borrowed from a lender that must be repaid
 - Equity: Money received by selling ownership stakes in the company.
- New projects should generate a return higher than the cost of capital.
- Highly risky projects almost always constitute a higher cost of capital than just upgrading a project.

Cost of Equity (Capital Asset Pricing Model)

$$R_e = R_f + \beta (R_m - R_f)$$

 $R_f = Risk-Free Rate (US Treasury Bonds are standard)$

 R_{m} - R_{f} = Equity Market Risk Premium (Estimate for R_{m} - S&P 500 typical returns are standard)

 $R_e = Cost of Equity$

 β = Sensitivity of stock's returns to the market

- If an investment has a higher beta, investors will demand higher returns \rightarrow higher cost of equity.
- Assumptions:
 - No idiosyncratic risk
 - Linear Relationship between Beta and Expected Return
 - Efficient Markets

Limitations of CAPM and Real-World Examples

- Various Assumptions are made about markets that aren't necessarily true
- Beta is backward-looking so it may not capture future risk
- Ignores other risk factors
- Market Risk Premium can vary
- Doesn't explain why some high-beta stocks underperform

Real World Examples

- Tech startups have a high cost of equity due to uncertainty and limited assets → harder to debt finance
- Manufacturing, on the other hand, typically have assets, so collateral is available for debt financing
- Stable cash flow = easier to fund because of a low risk premium

Cost of Debt

Cost of Debt =
$$\frac{Interest\ Expense}{Total\ Debt}$$
 × $(1-T)$

- If an investment has a higher beta, investors will demand higher returns → higher cost of equity.
- Adjust for tax because interest is tax-deductible.
- Assumptions:
 - No idiosyncratic risk
 - Linear Relationship between Beta and Expected Return
 - Efficient Markets

Cost of Preferred Stock

$$R_{ps} = \frac{D_{ps}}{P_{ps}}$$

 R_{ps} = cost of preferred stock

D_{ps} = Annual dividend on preferred stock

 P_{ps} = Current market price of the preferred stock

- Preferred stock is a hybrid between debt and equity
- They provide dividends like interest on debt, but not legally required to.
- Preferred stockholders get paid dividends before common stock and in case of liquidation, get assets before common stockholders.

Weighted Average Cost of Capital

$$WACC = Cost of Debt * W_D + Cost of Equity * W_e$$

 W_D = Weightage of Debt

W_e = Weightage of Equity

- The firm's average cost of raising capital (equity, debt, preferred)
- Used as the discount rate in DCF and hurdle rate for projects.
- Lowering WACC (via cheaper debt or optimized capital structure) increases firm value.

What does WACC say in plain English?

Ex. WACC =
$$8\%$$

• For every \$100 the firm raises (from equity, debt, preferred), investors expect on average \$8 per year in return.

Quick Case Comparison: Ford v Apple

Ford (Auto, Capital-Intensive)

- WACC: ~9–11% (historically higher than Apple's)
- Why higher?
 - Heavy debt load to fund factories,
 equipment, supply chain.
 - Highly cyclical industry → exposed to recessions, commodity prices, interest rates.
 - Higher equity beta and higher borrowing costs push up WACC.

Apple (Asset-Light, Tech)

- WACC: ~7–8% (varies with market conditions)
- Why so low?
 - Tons of cash on the balance sheet
 (almost risk-free buffer).
 - Steady global demand, sticky ecosystem, high margins.
 - Investors see it as relatively safe, so
 they don't demand crazy high returns.

Applications of WACC

• Discount Rate in Valuations

- Used as the discount rate in **DCF models** to calculate enterprise value.
- If your WACC is off, your valuation is worthless.

• Project Evaluation / Capital Budgeting

- Firms use WACC as the **hurdle rate** for new investments.
- If expected return > WACC \rightarrow accept. If < WACC \rightarrow reject.

• Performance Benchmark

- Compare **ROIC** (**Return on Invested Capital**) to WACC.
- ROIC > WACC → value creation. ROIC < WACC → value destruction.

• Capital Structure Decisions

- Managers weigh debt vs. equity financing to minimize WACC.
- Example: adding some debt lowers WACC because of the tax shield, but too much increases default risk.

• M&A and Strategic Decisions

 Acquirers use WACC to value target companies and test if a deal is accretive or dilutive.

• Industry Comparisons

WACC shows how risky different industries are.
 Utilities → low WACC. Airlines → high WACC.

Example: Estimating WACC for Company X

1. Cost of Equity (CAPM)

- A. Risk-free rate = 4% (10Y Treasury)
- B. Market Risk Premium = 5%

$$R_e = R_f + \beta (R_m - R_f) = 4\% + 1.2(5\%) = 10\%$$

2. Cost of Debt

- A. Interest Expense = \$600
- B. Total Debt = \$10,000

$$R_d = \frac{600}{10000} (1 - 0.25) = 6\%(0.75) = 4.5\%$$

3. Cost of Preferred Stock

- A. Dividend = \$5 per share
- B. Market Price = \$100

$$R_{ps} = \frac{5}{100} = 5\%$$

4. Capital Structure

- A. Equity = \$200m (50%)
- B. Debt = 150m (37.5%)
- C. Preferred = \$50m (12.5%)
- D. Total Capital (V) = \$400m

5. Weighted Average Cost of Capital

$$WACC = (0.50)(10\%) + (0.375)(4.5\%) + (0.125)(5\%) = 7.1\%$$

Wrap-Up and Q&A

- CAPM \rightarrow Cost of Equity
- Add Debt & Preferred
- Multiply each by the weight of influence it has on capital
- Calculates WACC
- WACC = hurdle rate / discount rate

